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1. Introduction  

Alzheimer’s disease is a progressive neurodegenerative disorder that leads to a decline in 

cognitive function, memory, and reasoning abilities [1]. It is more prevalent in individuals over the 

age of 65, with women showing higher susceptibility than men [2], [3] . In 2016, approximately 47 

million people worldwide were living with Alzheimer’s, and this number is projected to reach 131 

million by 2050 [4]. The global cost of caring for Alzheimer’s patients has been estimated at over 

US$800 billion, highlighting its profound social and economic burden [5]. 

This condition is primarily associated with the accumulation of beta-amyloid (Aβ) plaques and 

tau proteins, which damage neurons in brain regions such as the hippocampus, disrupt neural 

communication, and ultimately lead to cell death [6]. Early symptoms often include memory loss, 

difficulties with language, and impaired concentration, progressing to functional decline, personality 

changes, and loss of awareness [7]. Although no definitive cure exists, early detection and proper 

management can slow disease progression and improve patients’ quality of life. 
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Fig. 1. MRI Image Comparison A) Non-Alzheimer's Brain and B) Alzheimer's Sufferer [8] 

Magnetic Resonance Imaging (MRI) has emerged as a widely used non-invasive tool for detecting 

Alzheimer’s-related structural brain changes. MRI provides detailed images of atrophy, particularly 

in the hippocampus and entorhinal cortex, and enables longitudinal monitoring of disease progression 

while differentiating Alzheimer’s from other dementias [7]. To further enhance diagnostic precision, 

texture analysis techniques such as the Gray Level Co-occurrence Matrix (GLCM) have been applied 

to extract quantitative features that capture subtle changes in brain tissue. 

GLCM generates features such as contrast, homogeneity, correlation, energy, and entropy, which 

have been shown to discriminate between normal and pathological conditions [9]. Several studies 

have investigated the application of GLCM features in Alzheimer’s detection. For instance, Sørensen 

et al. (2019) [10] demonstrated that GLCM-derived texture features could differentiate Alzheimer’s 

patients from healthy controls, but their study relied on a broad feature set, leading to redundancy 

and potential overfitting. Lee et al. (2021) [11] applied machine learning models using GLCM and 

wavelet features, yet the interpretation of which features carried the most clinical significance was 

not clearly explained. Meanwhile, Wang et al. (2022) [12] reported that variations in parameters such 

as pixel distance and orientation substantially affected classification outcomes, reducing 

generalizability across datasets. 

These findings underline that while GLCM is a powerful approach, challenges remain regarding 

feature redundancy, parameter sensitivity, inter-subject variability, and dataset imbalance between 

Alzheimer’s and control groups [9], [10], [13]. To address these gaps, this study focuses on 

identifying the two most dominant GLCM features that consistently contribute to differentiating 

Alzheimer’s patients from healthy individuals [10]. By combining statistical tests with machine 

learning models, the research aims to determine clinically relevant features that enhance 

classification performance and reduce overfitting. The novelty of this study lies in emphasizing 

feature dominance and interpretability rather than relying solely on overall model accuracy, thereby 

contributing to both theoretical understanding and practical applications of MRI-based Alzheimer’s 

detection.  

Accordingly, the objectives of this research are (i) to evaluate GLCM-derived features using 

statistical and machine learning approaches, (ii) to identify the most significant features with 

consistent discriminative power, and (iii) to establish a methodological framework that supports the 

development of reliable image-based diagnostic tools for Alzheimer’s disease. 

This article is organized into three sections: Section 2 presents the research methodology, Section 

3 describes the results and simulation analysis, and Section 4 provides the conclusions. 

2. Method  
2.1. Dataset Selection and Image Preprocessing 

The dataset used in this study consisted of brain MRI images for both non-Alzheimer’s and 

Alzheimer’s conditions, obtained from the OASIS Alzheimer’s Detection repository 

(https://www.kaggle.com/datasets/ninadaithal/imagesoasis A total of 75 images from each category 

underwent preprocessing, which involved converting the images to grayscale, followed by resizing 

and cropping from the original resolution of 496 × 248 pixels to 256 × 256 pixels. This step was 

performed to ensure uniform image dimensions across the dataset. 
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Fig. 2. MRI Image Samples of Alzheimer’s A) before preprocessing and B) after preprocessing 

2.2. GLCM Feature Extraction 

The MRI brain images were preprocessed to ensure uniform resolution and intensity 

normalization prior to texture analysis. The Gray Level Co-occurrence Matrix (GLCM) approach 

was then applied for feature extraction. The extracted GLCM features included correlation, contrast, 

entropy, energy, homogeneity, and dissimilarity. A pixel distance of 1 was used, and the spatial 

relationships were computed at orientations of 0°, 45°, 90°, and 135° for each category [14], [15]. 

These features were selected because they are commonly used to capture texture characteristics in 

medical imaging, particularly in highlighting differences between pathological and non-pathological 

tissues. 

Subsequently, the extracted features were analyzed using both statistical and machine learning 

approaches. Non-parametric tests were applied to evaluate statistical significance between 

Alzheimer’s and non-Alzheimer groups, while classification models such as Decision Tree and 

Random Forest were employed to assess predictive performance [16], [17]. To avoid model bias and 

ensure generalization, a 5-fold cross-validation strategy was implemented. 

 

Fig. 1.Four degree on GLCM [18] 
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Table 1.  GLCM Feature Extraction [19] 

Feature Formula 

Energy 

∑(𝑝(𝑖, 𝑗))
2

𝑀

𝑖,𝑗=1

 

Contrast 

∑(𝑖 − 𝑗)2𝑝(𝑖, 𝑗)

𝑀

𝑖,𝑗=1

 

Dissimilarity 

∑|𝑖 − 𝑗|𝑝(𝑖, 𝑗)

𝑀

𝑖,𝑗=1

 

Correlation 

∑
(𝑖 − 𝜇𝑖)𝑝(𝑖, 𝑗)

𝜎𝑖𝜎𝑗

𝑀

𝑖,𝑗=1

 

Entropy 

∑ −𝑝(𝑖, 𝑗)

𝑀

𝑖,𝑗=1

𝑙𝑜𝑔2(𝑝(𝑖, 𝑗)) 

Homogeneity 

∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑀

𝑖,𝑗=1

 

 

2.3. Statistical Tests 

Statistical testing was performed after the extraction of the six selected GLCM features. The 

purpose of this analysis was to identify the two features that contributed most significantly to 

distinguishing between Alzheimer’s and non-Alzheimer’s conditions [20]. The Mann-Whitney U test 

was employed because the data did not follow a normal distribution and the groups being compared 

were independent [21]. 

2.4. Machine learning 

Machine learning was employed to identify the GLCM features that significantly contributed to 

distinguishing between Alzheimer’s and non-Alzheimer’s conditions and to enhance classification 

performance. The models applied in this study included the Decision Tree and Random Forest 

algorithms, which were selected because of their effectiveness in handling complex nonlinear data, 

reducing overfitting through ensemble learning, and providing valuable measures of feature 

importance for medical image analysis[22], [12].  

 

Fig. 2.Flowchart the Method 
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2.4.1 Decision Tree 

The Decision Tree is a supervised learning algorithm that is particularly suitable for 

handling nonlinear or complex relationships between independent variables and the target 

variable [23]. The algorithm operates by recursively splitting the dataset into a hierarchy of 

nodes or branches. Depending on the number of target classes, these nodes are further divided 

into smaller sub-nodes, and when a node can no longer be split, it is referred to as a terminal 

node. The splitting criteria vary depending on the characteristics of the dataset and may involve 

different measures such as information gain, Gini index, or entropy-based approaches [24]. 

 
Fig.3.Classification Flow with Decision Tree [25] 

2.4.2 Random Forest 

Despite its interpretability and ease of use, one of the major drawbacks of the Decision 

Tree is its tendency to overfit, especially when the tree is grown without constraints. In such 

cases, the model may achieve perfect accuracy on the training data by creating highly specific 

branches that fail to generalize well to unseen data. To overcome this limitation, ensemble 

methods such as Random Forest have been developed. Random Forest operates by 

constructing multiple decision trees from different subsets of the data through a process 

known as bagging, and then aggregating their predictions. For classification tasks, the final 

decision is obtained through majority voting, while for regression tasks, it is determined by 

averaging the outputs of individual trees[26], [27]. This ensemble approach reduces variance, 

improves stability, and significantly mitigates the risk of overfitting, thereby making 

Random Forest a powerful and widely used algorithm in medical image analysis. 

 

 

Fig.4.Classification Flow with Random Forest [25] 
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Unlike decision-making approaches that rely on questionnaires, this study did not employ survey 

methods because the data analysis was entirely based on medical imaging datasets. The reliability of 

the method was ensured through the use of a balanced dataset, rigorous statistical testing, and 

repeated validation via 5-fold cross-validation. These steps substitute the role of subjective 

assessments (e.g., questionnaires) by providing objective, reproducible, and data driven results. 

3. Results and Discussion 
Following the simulation, an analysis of GLCM texture features from brain MRI images was 

conducted, accompanied by a discussion of each feature’s contribution to distinguishing between 

Alzheimer’s and non-Alzheimer’s cases. Various approaches were employed to evaluate the most 

influential features, including the non-parametric Mann-Whitney U test, Decision Tree and Random 

Forest algorithms, as well as K-Fold cross-validation. The results revealed that the contrast feature 

at the 90° orientation consistently emerged as one of the most dominant predictors [28], [29], while 

features such as correlation at 135° and homogeneity at 90° demonstrated varying levels of influence 

depending on the evaluation method. These findings suggested that although multiple texture features 

captured structural changes in the brain, only a limited subset consistently contributed to the 

classification process.  

3.1. Statistical Test Results 
An initial analysis was conducted using the Mann–Whitney U test to assess differences in GLCM 

feature values between the Alzheimer’s and non-Alzheimer’s groups. Among all features extracted at 
multiple angular orientations (0°, 45°, 90°, and 135°), contrast at 90° and 45° demonstrated 
statistically significant differences with p-values < 0.05. This indicated that both features had strong 
discriminatory potential, reflecting textural alterations associated with neurodegeneration. The results 
aligned with previous studies that emphasized contrast-related measures as robust biomarkers for 
brain tissue heterogeneity in Alzheimer’s disease, thereby strengthening their clinical relevance. 

3.2   Machine Learning Results 
  After the GLCM features were extracted and statistically analyzed, machine learning approaches 

were employed to evaluate the contribution of each feature in classifying Alzheimer’s and non-

Alzheimer’s cases. The models applied included Decision Tree, Random Forest, and K-Fold Cross 

Validation. The Decision Tree analysis indicated that contrast at 90° and homogeneity at 90° were 

the two most dominant features in separating the classes, achieving an accuracy of 95.5% on the 

training data. 

 

Fig.5.Decision Tree Diagram 
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Fig.6.Important Features of Using Decision Tree  

When the evaluation was extended using K-Fold Cross Validation, the most consistently selected 

features were contrast at 90° and correlation at 135°. Under this validation scheme, the average 

accuracy of the Decision Tree increased to 98.7%, as shown in Figure 9. This finding highlighted the 

significant contribution of correlation at 135°, which had been less apparent in the initial Decision 

Tree and statistical test results. It also suggested that the earlier dominance of homogeneity at 90° 

might have been biased toward specific subsets of the data, reflecting the model’s greater 

susceptibility to overfitting compared to the more robust K-Fold Cross Validation approach. 

 

Fig.7.Important Features of Using K-Fold Cross Validation 

The Random Forest model further supported these outcomes. As presented in Figure 10, the 

model achieved an accuracy of 93% when correlation at 135° was included and 90% when it was 

excluded. Despite this, the model consistently selected contrast at 90° and contrast at 45° as the 

features with the highest importance, demonstrating their central role in the classification process. 
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Fig.8.Important Features of Using Random Forest 

Additional insights were obtained from the correlation heatmap analysis (Figure 11). A very 

strong relationship was observed between contrast at 45° and contrast at 90° (r = 0.96), suggesting 

that these two features conveyed highly similar texture information. By contrast, the correlation 

between contrast at 45° and homogeneity at 90° was very low (r = –0.06), explaining why these 

features did not consistently co-occur in the modeling process. 

 
Fig.9.Heatmap of Correlation 

The results of the Mann–Whitney U statistical test indicated that only two features contrast at 90° 

and contrast at 45°. Differed significantly between the two groups, with p-values < 0.05. This finding 

suggested that the differences in pixel intensity in the vertical and diagonal orientations were 

substantial between the Alzheimer’s and non-Alzheimer’s groups. In contrast, the machine learning 

analysis, particularly the Decision Tree with K-Fold Cross Validation and the Random Forest model, 

identified correlation at 135° as another important feature despite its lack of statistical significance. 

This indicated that while correlation at 135° may not have shown a strong global distributional 
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difference, it contributed meaningfully to the underlying classification structure when integrated into 

predictive modeling [11], [30]. 

Table 2.  Comparison of GLCM Feature Results on Statistical Tests and Machine Learning 

GLCM Features Statistical 

Tests (p < 

0.05) 

Decision 

Tree 

Random 

Forest 

K-Fold Cross Validation 

Decision Tree 

Contrast 90o Yes Yes Yes Yes 

Contrast 45o Yes No Yes No 

Homogeneity 90o No Yes No No 

Correlation 135o No Sometimes  No Consisten 

Based on the results of both statistical and machine learning analyses, contrast at 90° consistently 

emerged as the most dominant feature in distinguishing between the brains of Alzheimer’s patients 

and non-Alzheimer’s individuals. The contrast feature reflected the degree of variation or difference 

in gray-level intensity between adjacent pixel pairs. In particular, contrast at 90° captured the vertical 

relationship between pixels. The anatomical structure of the brain, especially in axial or sagittal MRI 

slices, often exhibited more distinct vertical texture patterns in Alzheimer’s patients compared to 

non-Alzheimer’s individuals. Therefore, contrast at 90° successfully captured significant vertical 

texture variations in brain regions such as the hippocampus, which is known to be one of the earliest 

and most severely affected regions in Alzheimer’s disease. 

In MRI images of Alzheimer’s patients, progressive atrophy was observed, leading to 

irregularities in tissue texture. This was reflected in higher contrast values, which indicated that pixel 

intensities often differed substantially from one another. In contrast, non-Alzheimer’s brains 

exhibited more homogeneous textures, resulting in lower contrast values. Thus, contrast served as a 

robust indicator of structural changes associated with Alzheimer’s pathology. These results aligned 

with previous studies reporting that contrast measures from GLCM were sensitive to morphological 

abnormalities and could function as non-invasive biomarkers of neurodegeneration. 

The second feature that demonstrated a significant yet method-dependent contribution was 

correlation at 135°. Correlation measured the similarity between pixel pairs based on the linear 

relationship of their intensities. Although its contribution varied across methods, its consistent 

appearance in cross-validation confirmed that it captured meaningful structural disruptions in 

Alzheimer’s brains. This demonstrated that directional texture information is important for 

characterizing subtle brain changes. 

Correlation values indicated the degree of dependency between pixel intensities. A high 

correlation suggested a strong linear relationship, whereas a low correlation reflected irregular or 

disrupted tissue organization. In Alzheimer’s patients, this inter-pixel relationship was often altered 

due to neurodegeneration, leading to decreased correlation values in particular orientations. The 

identification of correlation at 135° as an important feature suggested that texture irregularities in 

this direction were more prominent in Alzheimer’s brains compared to non-Alzheimer’s brains. 

The contrast feature at 45° also showed a very high correlation with contrast at 90° (r = 0.96). 

However, this feature tended to be less stable across models and was often replaced by either 

homogeneity at 90° or correlation at 135°. This reinforces that feature selection should consider both 

statistical significance and predictive contribution within models, to avoid redundancy and maximize 

interpretability. Furthermore, the low correlation between contrast at 45° and homogeneity at 90° (r 

= –0.06) suggested that these features captured very different aspects of tissue structure, explaining 

why they did not consistently co-occur in the models. 

Overall, this study confirmed that the combination of contrast at 90° and correlation at 135° 

provided the best performance in distinguishing between Alzheimer’s and non-Alzheimer’s brain 

images [31]. Within the Decision Tree model using cross-validation, these two features consistently 

emerged as The complementary nature of these features contrast capturing irregularity and 

correlation capturing intensity dependency enhanced robustness and reduced overfitting. Repeated 

validation using K-Fold cross-validation further confirmed the reliability of these findings, 

demonstrating that the method is suitable for application across different data subsets. 
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These results not only confirm the potential of GLCM derived features but also refine the 

understanding of which features are most clinically meaningful. Unlike earlier studies that relied on 

large feature sets without addressing redundancy, this study identifies a minimal yet highly 

informative feature set. From a clinical perspective, this is significant: lightweight models based on 

only two dominant features can enable efficient, interpretable, and computationally less demanding 

systems for early Alzheimer’s screening. Such models are easier to validate in clinical practice and 

reduce the risk of overfitting in real-world deployment. 

In summary, repeated validation demonstrated that the combination of contrast at 90° and 

correlation at 135° is a robust and clinically interpretable feature set for Alzheimer’s detection. This 

methodological framework contributes to the development of reliable MRI-based biomarkers for 

neurodegeneration and supports future research toward practical, automated diagnostic tools. 

4. Conclusion 
This study demonstrated that texture feature analysis of MRI images using the Gray Level Co-

occurrence Matrix (GLCM) method can effectively identify distinguishing characteristics between 

the brains of individuals with Alzheimer’s disease and those of healthy individuals. The 

methodological process, which integrated statistical tests, Decision Tree, Random Forest, and K-

Fold Cross Validation, not only confirmed contrast at 90° as the most dominant feature but also 

highlighted correlation at 135° as a complementary predictor that improved classification 

performance. 

The repeated testing through cross-validation ensured that the identified features were consistent 

and robust across different data subsets, reducing the risk of overfitting and increasing confidence in 

the reliability of the method. Furthermore, the process revealed that while additional features such as 

homogeneity at 90° appeared in certain analyses, they lacked the stability needed for reliable 

diagnostic use. 

Overall, the findings underscore that focusing on a minimal yet highly informative feature 

setcontrast at 90° and correlation at 135° enhances both methodological soundness and clinical 

applicability. This demonstrates that the method is not only suitable but also practical for the 

development of lightweight, interpretable, and automated systems for early detection of Alzheimer’s 

disease. 
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