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ARTICLE INFO ABSTRACT

Alzheimer’s disease is a progressive neurodegenerative disorder that
leads to a gradual decline in memory and cognitive function, most
commonly affecting individuals over the age of 65. Early detection is
essential to enable timely interventions, slow disease progression, and
improve quality of life. This study aimed to identify the most dominant
texture features from brain MRI images using the Gray Level Co-
occurrence Matrix (GLCM) for feature extraction. The extracted

Keywords features were analyzed through non-parametric statistical tests and
Alzheimer machine learning algorithms, including Decision Tree and Random
Contrast Forest, and validated with cross-validation procedures to ensure
Correlation robustness. The findings revealed that contrast at 90° consistently
GLCM emerged as the most significant feature, capturing vertical texture
Machine learning variations associated with brain atrophy, while correlation at 135°

provided additional discriminatory power by representing disrupted
pixel intensity relationships. In combination, these features enhanced
the accuracy of classification models, outperforming other GLCM
parameters. The results emphasize that careful selection of texture
features improves both accuracy and stability in distinguishing between
Alzheimer’s and non-Alzheimer’s brains. This study demonstrates that
image-based machine learning frameworks can serve as reliable tools
to support early detection of Alzheimer’s disease, offering valuable
implications for clinical practice and guiding future research on
efficient, non-invasive diagnostic approaches.

This is an open access article under the CC-BY-SA license.

1. Introduction

Alzheimer’s disease is a progressive neurodegenerative disorder that leads to a decline in
cognitive function, memory, and reasoning abilities [1]. It is more prevalent in individuals over the
age of 65, with women showing higher susceptibility than men [2], [3] . In 2016, approximately 47
million people worldwide were living with Alzheimer’s, and this number is projected to reach 131
million by 2050 [4]. The global cost of caring for Alzheimer’s patients has been estimated at over
US$800 billion, highlighting its profound social and economic burden [5].

This condition is primarily associated with the accumulation of beta-amyloid (AB) plaques and
tau proteins, which damage neurons in brain regions such as the hippocampus, disrupt neural
communication, and ultimately lead to cell death [6]. Early symptoms often include memory loss,
difficulties with language, and impaired concentration, progressing to functional decline, personality
changes, and loss of awareness [7]. Although no definitive cure exists, early detection and proper
management can slow disease progression and improve patients’ quality of life.
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Fig. 1.MRI Image Comparison A) Non-Alzheimer's Brain and B) Alzheimer's Sufferer [8]

Magnetic Resonance Imaging (MRI) has emerged as a widely used non-invasive tool for detecting
Alzheimer’s-related structural brain changes. MRI provides detailed images of atrophy, particularly
in the hippocampus and entorhinal cortex, and enables longitudinal monitoring of disease progression
while differentiating Alzheimer’s from other dementias [7]. To further enhance diagnostic precision,
texture analysis techniques such as the Gray Level Co-occurrence Matrix (GLCM) have been applied
to extract quantitative features that capture subtle changes in brain tissue.

GLCM generates features such as contrast, homogeneity, correlation, energy, and entropy, which
have been shown to discriminate between normal and pathological conditions [9]. Several studies
have investigated the application of GLCM features in Alzheimer’s detection. For instance, Sgrensen
et al. (2019) [10] demonstrated that GLCM-derived texture features could differentiate Alzheimer’s
patients from healthy controls, but their study relied on a broad feature set, leading to redundancy
and potential overfitting. Lee et al. (2021) [11] applied machine learning models using GLCM and
wavelet features, yet the interpretation of which features carried the most clinical significance was
not clearly explained. Meanwhile, Wang et al. (2022) [12] reported that variations in parameters such
as pixel distance and orientation substantially affected classification outcomes, reducing
generalizability across datasets.

These findings underline that while GLCM is a powerful approach, challenges remain regarding
feature redundancy, parameter sensitivity, inter-subject variability, and dataset imbalance between
Alzheimer’s and control groups [9], [10], [13]. To address these gaps, this study focuses on
identifying the two most dominant GLCM features that consistently contribute to differentiating
Alzheimer’s patients from healthy individuals [10]. By combining statistical tests with machine
learning models, the research aims to determine clinically relevant features that enhance
classification performance and reduce overfitting. The novelty of this study lies in emphasizing
feature dominance and interpretability rather than relying solely on overall model accuracy, thereby
contributing to both theoretical understanding and practical applications of MRI-based Alzheimer’s
detection.

Accordingly, the objectives of this research are (i) to evaluate GLCM-derived features using
statistical and machine learning approaches, (ii) to identify the most significant features with
consistent discriminative power, and (iii) to establish a methodological framework that supports the
development of reliable image-based diagnostic tools for Alzheimer’s disease.

This article is organized into three sections: Section 2 presents the research methodology, Section
3 describes the results and simulation analysis, and Section 4 provides the conclusions.

2. Method
2.1. Dataset Selection and Image Preprocessing

The dataset used in this study consisted of brain MRI images for both non-Alzheimer’s and
Alzheimer’s conditions, obtained from the OASIS Alzheimer’s Detection repository
(https://www.kaggle.com/datasets/ninadaithal/imagesoasis A total of 75 images from each category
underwent preprocessing, which involved converting the images to grayscale, followed by resizing
and cropping from the original resolution of 496 x 248 pixels to 256 x 256 pixels. This step was
performed to ensure uniform image dimensions across the dataset.
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Fig. 2.MRI Image Samples of Alzheimer’s A) before preprocessing and B) after preprocessing

2.2.GLCM Feature Extraction

The MRI brain images were preprocessed to ensure uniform resolution and intensity
normalization prior to texture analysis. The Gray Level Co-occurrence Matrix (GLCM) approach
was then applied for feature extraction. The extracted GLCM features included correlation, contrast,
entropy, energy, homogeneity, and dissimilarity. A pixel distance of 1 was used, and the spatial
relationships were computed at orientations of 0°, 45°, 90°, and 135° for each category [14], [15].
These features were selected because they are commonly used to capture texture characteristics in
medical imaging, particularly in highlighting differences between pathological and non-pathological
tissues.

Subsequently, the extracted features were analyzed using both statistical and machine learning
approaches. Non-parametric tests were applied to evaluate statistical significance between
Alzheimer’s and non-Alzheimer groups, while classification models such as Decision Tree and
Random Forest were employed to assess predictive performance [16], [17]. To avoid model bias and
ensure generalization, a 5-fold cross-validation strategy was implemented.

135° 90° 45°

Pixel of interest 0°

Fig. 1.Four degree on GLCM [18]
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2.3. Statistical Tests

Statistical testing was performed after the extraction of the six selected GLCM features. The
purpose of this analysis was to identify the two features that contributed most significantly to
distinguishing between Alzheimer’s and non-Alzheimer’s conditions [20]. The Mann-Whitney U test
was employed because the data did not follow a normal distribution and the groups being compared
were independent [21].

2.4.Machine learning

Machine learning was employed to identify the GLCM features that significantly contributed to
distinguishing between Alzheimer’s and non-Alzheimer’s conditions and to enhance classification
performance. The models applied in this study included the Decision Tree and Random Forest
algorithms, which were selected because of their effectiveness in handling complex nonlinear data,
reducing overfitting through ensemble learning, and providing valuable measures of feature
importance for medical image analysis[22], [12].

Machine
Learning

Data . GLCM
Preprossesing Extraction

) Statistic Test
collection

Fig. 2.Flowchart the Method
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2.4.1 Decision Tree

2472

The Decision Tree is a supervised learning algorithm that is particularly suitable for
handling nonlinear or complex relationships between independent variables and the target
variable [23]. The algorithm operates by recursively splitting the dataset into a hierarchy of
nodes or branches. Depending on the number of target classes, these nodes are further divided
into smaller sub-nodes, and when a node can no longer be split, it is referred to as a terminal
node. The splitting criteria vary depending on the characteristics of the dataset and may involve
different measures such as information gain, Gini index, or entropy-based approaches [24].

Root Node
Branch/ Sub-Tree
Decision Node
| Decision Node
Terminal Node Decision Node Terminal Node Terminal Node
Terminal Node Terminal Node

Fig.3.Classification Flow with Decision Tree [25]

Random Forest

Despite its interpretability and ease of use, one of the major drawbacks of the Decision
Tree is its tendency to overfit, especially when the tree is grown without constraints. In such
cases, the model may achieve perfect accuracy on the training data by creating highly specific
branches that fail to generalize well to unseen data. To overcome this limitation, ensemble
methods such as Random Forest have been developed. Random Forest operates by
constructing multiple decision trees from different subsets of the data through a process
known as bagging, and then aggregating their predictions. For classification tasks, the final
decision is obtained through majority voting, while for regression tasks, it is determined by
averaging the outputs of individual trees[26], [27]. This ensemble approach reduces variance,
improves stability, and significantly mitigates the risk of overfitting, thereby making
Random Forest a powerful and widely used algorithm in medical image analysis.
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Fig.4.Classification Flow with Random Forest [25]
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Unlike decision-making approaches that rely on questionnaires, this study did not employ survey
methods because the data analysis was entirely based on medical imaging datasets. The reliability of
the method was ensured through the use of a balanced dataset, rigorous statistical testing, and
repeated validation via 5-fold cross-validation. These steps substitute the role of subjective
assessments (e.g., questionnaires) by providing objective, reproducible, and data driven results.

3. Results and Discussion

Following the simulation, an analysis of GLCM texture features from brain MRI images was
conducted, accompanied by a discussion of each feature’s contribution to distinguishing between
Alzheimer’s and non-Alzheimer’s cases. Various approaches were employed to evaluate the most
influential features, including the non-parametric Mann-Whitney U test, Decision Tree and Random
Forest algorithms, as well as K-Fold cross-validation. The results revealed that the contrast feature
at the 90° orientation consistently emerged as one of the most dominant predictors [28], [29], while
features such as correlation at 135° and homogeneity at 90° demonstrated varying levels of influence
depending on the evaluation method. These findings suggested that although multiple texture features
captured structural changes in the brain, only a limited subset consistently contributed to the
classification process.

3.1. Statistical Test Results

An initial analysis was conducted using the Mann—Whitney U test to assess differences in GLCM
feature values between the Alzheimer’s and non-Alzheimer’s groups. Among all features extracted at
multiple angular orientations (0°, 45°, 90°, and 135°), contrast at 90° and 45° demonstrated
statistically significant differences with p-values < 0.05. This indicated that both features had strong
discriminatory potential, reflecting textural alterations associated with neurodegeneration. The results
aligned with previous studies that emphasized contrast-related measures as robust biomarkers for
brain tissue heterogeneity in Alzheimer’s disease, thereby strengthening their clinical relevance.

3.2 Machine Learning Results

After the GLCM features were extracted and statistically analyzed, machine learning approaches
were employed to evaluate the contribution of each feature in classifying Alzheimer’s and non-
Alzheimer’s cases. The models applied included Decision Tree, Random Forest, and K-Fold Cross
Validation. The Decision Tree analysis indicated that contrast at 90° and homogeneity at 90° were
the two most dominant features in separating the classes, achieving an accuracy of 95.5% on the
training data.

Decision Tree Visualization

contrast_90 <= 65.85
gini = 0.499
samples = 105
value = [55, 50]
class = y[0]

False

homogeneity 90 <= 0.411
gini = 0.068
samples = 57
value = [55, 2]
class = y[0]

Fig.5.Decision Tree Diagram
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Feature Importance using Decision Tree
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Fig.6.Important Features of Using Decision Tree

When the evaluation was extended using K-Fold Cross Validation, the most consistently selected
features were contrast at 90° and correlation at 135°. Under this validation scheme, the average
accuracy of the Decision Tree increased to 98.7%, as shown in Figure 9. This finding highlighted the
significant contribution of correlation at 135°, which had been less apparent in the initial Decision
Tree and statistical test results. It also suggested that the earlier dominance of homogeneity at 90°
might have been biased toward specific subsets of the data, reflecting the model’s greater
susceptibility to overfitting compared to the more robust K-Fold Cross Validation approach.

Feature Importance using K-Fold
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Fig.7.Important Features of Using K-Fold Cross Validation

The Random Forest model further supported these outcomes. As presented in Figure 10, the
model achieved an accuracy of 93% when correlation at 135° was included and 90% when it was
excluded. Despite this, the model consistently selected contrast at 90° and contrast at 45° as the
features with the highest importance, demonstrating their central role in the classification process.
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Feature Important using Random Forest
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Fig.8.Important Features of Using Random Forest

Additional insights were obtained from the correlation heatmap analysis (Figure 11). A very
strong relationship was observed between contrast at 45° and contrast at 90° (r = 0.96), suggesting
that these two features conveyed highly similar texture information. By contrast, the correlation
between contrast at 45° and homogeneity at 90° was very low (r = —0.06), explaining why these
features did not consistently co-occur in the modeling process.

Matrix Korelasi Fitur
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contrast_45
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- 0.0

homogeneity_90

correlation_135

i
contrast_90 contrast_45 homogeneity_90 correlation_135

Fig.9.Heatmap of Correlation

The results of the Mann—Whitney U statistical test indicated that only two features contrast at 90°
and contrast at 45°. Differed significantly between the two groups, with p-values < 0.05. This finding
suggested that the differences in pixel intensity in the vertical and diagonal orientations were
substantial between the Alzheimer’s and non-Alzheimer’s groups. In contrast, the machine learning
analysis, particularly the Decision Tree with K-Fold Cross Validation and the Random Forest model,
identified correlation at 135° as another important feature despite its lack of statistical significance.

This indicated that while correlation at 135° may not have shown a strong global distributional
B
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difference, it contributed meaningfully to the underlying classification structure when integrated into
predictive modeling [11], [30].

Table 2. Comparison of GLCM Feature Results on Statistical Tests and Machine Learning

GLCM Features Statistical Decision Random K-Fold Cross Validation
Tests (p < Tree Forest Decision Tree
0.05)

Contrast 90° Yes Yes Yes Yes

Contrast 45° Yes No Yes No

Homogeneity 90°  No Yes No No

Correlation 135° No Sometimes No Consisten

Based on the results of both statistical and machine learning analyses, contrast at 90° consistently
emerged as the most dominant feature in distinguishing between the brains of Alzheimer’s patients
and non-Alzheimer’s individuals. The contrast feature reflected the degree of variation or difference
in gray-level intensity between adjacent pixel pairs. In particular, contrast at 90° captured the vertical
relationship between pixels. The anatomical structure of the brain, especially in axial or sagittal MRI
slices, often exhibited more distinct vertical texture patterns in Alzheimer’s patients compared to
non-Alzheimer’s individuals. Therefore, contrast at 90° successfully captured significant vertical
texture variations in brain regions such as the hippocampus, which is known to be one of the earliest
and most severely affected regions in Alzheimer’s disease.

In MRI images of Alzheimer’s patients, progressive atrophy was observed, leading to
irregularities in tissue texture. This was reflected in higher contrast values, which indicated that pixel
intensities often differed substantially from one another. In contrast, non-Alzheimer’s brains
exhibited more homogeneous textures, resulting in lower contrast values. Thus, contrast served as a
robust indicator of structural changes associated with Alzheimer’s pathology. These results aligned
with previous studies reporting that contrast measures from GLCM were sensitive to morphological
abnormalities and could function as non-invasive biomarkers of neurodegeneration.

The second feature that demonstrated a significant yet method-dependent contribution was
correlation at 135°. Correlation measured the similarity between pixel pairs based on the linear
relationship of their intensities. Although its contribution varied across methods, its consistent
appearance in cross-validation confirmed that it captured meaningful structural disruptions in
Alzheimer’s brains. This demonstrated that directional texture information is important for
characterizing subtle brain changes.

Correlation values indicated the degree of dependency between pixel intensities. A high
correlation suggested a strong linear relationship, whereas a low correlation reflected irregular or
disrupted tissue organization. In Alzheimer’s patients, this inter-pixel relationship was often altered
due to neurodegeneration, leading to decreased correlation values in particular orientations. The
identification of correlation at 135° as an important feature suggested that texture irregularities in
this direction were more prominent in Alzheimer’s brains compared to non-Alzheimer’s brains.

The contrast feature at 45° also showed a very high correlation with contrast at 90° (r = 0.96).
However, this feature tended to be less stable across models and was often replaced by either
homogeneity at 90° or correlation at 135°. This reinforces that feature selection should consider both
statistical significance and predictive contribution within models, to avoid redundancy and maximize
interpretability. Furthermore, the low correlation between contrast at 45° and homogeneity at 90° (r
= —0.06) suggested that these features captured very different aspects of tissue structure, explaining
why they did not consistently co-occur in the models.

Overall, this study confirmed that the combination of contrast at 90° and correlation at 135°
provided the best performance in distinguishing between Alzheimer’s and non-Alzheimer’s brain
images [31]. Within the Decision Tree model using cross-validation, these two features consistently
emerged as The complementary nature of these features contrast capturing irregularity and
correlation capturing intensity dependency enhanced robustness and reduced overfitting. Repeated
validation using K-Fold cross-validation further confirmed the reliability of these findings,
demonstrating that the method is suitable for application across different data subsets.
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These results not only confirm the potential of GLCM derived features but also refine the
understanding of which features are most clinically meaningful. Unlike earlier studies that relied on
large feature sets without addressing redundancy, this study identifies a minimal yet highly
informative feature set. From a clinical perspective, this is significant: lightweight models based on
only two dominant features can enable efficient, interpretable, and computationally less demanding
systems for early Alzheimer’s screening. Such models are easier to validate in clinical practice and
reduce the risk of overfitting in real-world deployment.

In summary, repeated validation demonstrated that the combination of contrast at 90° and
correlation at 135° is a robust and clinically interpretable feature set for Alzheimer’s detection. This
methodological framework contributes to the development of reliable MRI-based biomarkers for
neurodegeneration and supports future research toward practical, automated diagnostic tools.

4. Conclusion

This study demonstrated that texture feature analysis of MRI images using the Gray Level Co-
occurrence Matrix (GLCM) method can effectively identify distinguishing characteristics between
the brains of individuals with Alzheimer’s disease and those of healthy individuals. The
methodological process, which integrated statistical tests, Decision Tree, Random Forest, and K-
Fold Cross Validation, not only confirmed contrast at 90° as the most dominant feature but also
highlighted correlation at 135° as a complementary predictor that improved classification
performance.

The repeated testing through cross-validation ensured that the identified features were consistent
and robust across different data subsets, reducing the risk of overfitting and increasing confidence in
the reliability of the method. Furthermore, the process revealed that while additional features such as
homogeneity at 90° appeared in certain analyses, they lacked the stability needed for reliable
diagnostic use.

Overall, the findings underscore that focusing on a minimal yet highly informative feature
setcontrast at 90° and correlation at 135° enhances both methodological soundness and clinical
applicability. This demonstrates that the method is not only suitable but also practical for the
development of lightweight, interpretable, and automated systems for early detection of Alzheimer’s
disease.
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