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Toxicity prediction topic requires several new approaches for
knowledge discovery from data to paradigm composite associations
between the modules of the chemical compound; such techniques
need more computational cost as the number of chemical compounds
increases. State-of-the-art prediction methods such as neural network
and multi-layer regression that requires either tuning parameters or
complex transformations of predictor or outcome variables are not
achieving high accuracy results. This paper proposes a Quantum

Ic(fly W[.m;‘?" fs: Inspired Genetic Programming “QIGP” model to improve the
emtm Ogna ICS;. ] prediction accuracy. Genetic Programming is utilized to give a linear
I?rtzrllc':;ln Omputng; equation for calculating toxicity degree more accurately. Quantum

computing is employed to improve the selection of the best-of-run
individuals and handles parsimony pressure to reduce the complexity
of the solutions. The results of the internal validation analysis
indicated that the QIGP model has the better goodness of fit statistics
and significantly outperforms the Neural Network model.
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I. Introduction

Cheminformatics is a part of computer science that plays an important role in collecting, storing
and analyzing the chemical data. Cheminformatics mixes biology, chemistry, biochemistry, physics,
statistics, mathematics, and informatics [1]. Toxicology deals with the quantitative calculation of
toxicant effects to organisms in relation to the extent, duration, and frequency of exposure [2].
Toxicity prediction is considered one of the major disciplines of cheminformatics [1]. As the
experimental determination of properties could be a pricey and time-consuming process, it is
essential to develop mathematical predictive relationships to measure the toxicity scale [2].
Assessment of biological stimulates with a fast, unsophisticated, susceptible and cost- applicable
technique can specify explicit information on toxicity [3].

Within the toxicity prediction, accuracy, explanatory value and configurability are used in
assessing the utility and quality of prediction techniques [4]. Noticeably, a prediction method that
not succeed to sustain a certain level of accuracy will not be adequate. However, the researchers
believe that accuracy, by itself, is not a sufficient condition for acceptance. Furthermore, if a
particular prediction is in some sense, surprising to the end user, it is harder to establish any
rationale for the value generated (has no explanatory value). Regarding configurability, how much
effort is required to build the prediction system in order to generate useful results. Regression
examination is a well-recognized procedure including well-intentioned tool assistance. Nevertheless,
it requires significant endeavor to form the neural net and it calls for a reasonable level of
knowledge. Even though several groups of heuristics have been issued on this subject, these
procedures’ process largely to be one of trial and error. Consequently, it is complex to understand in
what way ANN methods could be straightforwardly employed inside the estimation task setting by
end-users [4].
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In the literature, several statistical prediction approaches have been utilized for Quantitative
Structure-Toxicity Relationship (QSTR), including discriminant analysis, principal component
analysis, multiple linear regression, factor analysis, multivariate analysis, partial least squares,
cluster analysis, and adaptive least squares [5]. These techniques are easy to implement and do not
need a large computational cost, yet they have a less accurate prediction. Furthermore, Radial basis
function (RBF) can be exploited to estimate QSTRs that verified to have a substantial predictive
ability, as it is rapidly and cyclical, contrary to the major of current traditional training procedures
[2]. RBFs have better generalization capabilities compared to linear regression models at the
expense of the increased complexity of the model compared to a simple structure of a linear model.
RBF is expensive and needs more time-consuming tests for resolving toxicity. The NN systems are
usually employed once the connections between items cannot be inferred exactly by linear operates
[2].
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Fig. 1: Genetic Programming Flowchart

Genetic Programming (GP) is a form of biologically inspired automatic program induction where
evolutionary algorithms are used to build computer programs (e.g. Prediction) and complex data
structures [6]. GP showed better performance than NN in the various levels of problem difficulty.
GP also revealed robustness to untrained data, which initiated problems for the NNs. The
optimization of the NN’s structure was observed to be integral in obtaining both convergence and
acceptable performance. A well-defined style for construction optimization is not manifest in the
case of NNs, and an overall ideal solution may not be applied. On the other hand, because of the
global searching nature of GP, these problems with NN could be solved by using GP [7]. Genetic
algorithm (GA) is a general approach for solving problems or "teaching" the machine to react to
specific things in a specific way; whereas GP is a specific niche in GA, which lets the computer,
write code by itself. Fig.1 illustrates the GP flowchart; see [8] for more details regarding the
complete steps of GP.

One of the variables that actually affect the efficiency of GP is the selection. The selection
operator is precisely prepared to confirm that appropriate participants of the population (with
superior fitness) have a better chance of being nominated for reproducing or modify. Nevertheless,
inferior participants of the population yet have a minor chance of being elected, and this is essential
to guarantee that the exploration procedure is global and does not easily converge to the closest local
optimum [9]. There are three main categories of selection; roulette wheel, rank-based roulette wheel,
and tournament selection. See [10] for more details regarding these types. As stated in [10] the GA
based tournament selection is more efficient in obtaining a minimum total distance with less number
of generations and fastest iteration time matched to the other two policies [10]. Still, this is only
valid to trivial problem size. As the size of problem growth, tournament selection, in addition to
proportional roulette wheel turns out to be vulnerable to early convergence [10].

The key ability of quantum computing is to powerfully resolve specific problems that are
computationally cost for a classical computing [11]. The power of the genetic-inspired quantum
computing is in that the integration of micro-space and macro-space based search along with the
synthesis of multiple various genetic operators; i.e. it explores large search spaces while preserving
the relationship between efficiency and performance [12][13]. Conventional quantum-inspired
exploration procedures employ the idea of superposition state to deal with combinatorial difficulties
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that adjust each variable individually [14]. Superposition is the aptitude of a quantum system to be in
numerous positions (states) at the same time while waiting for measuring. The actual strength in
arrears of quantum computing is precisely the superposition of states. Classical computers are in one
state at each instant. Quantum computers can be retained in a superposition of states. This is the final
in parallel processing [15].

The main purpose of this paper is to investigate the accuracy of an adapted Quantum-Inspired
Genetic programming (QIGP) for estimation of toxicity degree of chemical compounds. The
suggested scheme relies on the concept of superposition fitness selection to enhance the traditional
GP selection strategy, reduce the computational cost, and evade early convergence. Furthermore, it
adopts a superposition in both of mutation (divergence) and crossover (convergence) operations to
increase diversity and handle populations’ selection at one time [15]. In general, the contributions in
this paper are presented as follows: (1) this study attempts to expedite the traditional chemical
compounds’ toxicity prediction techniques by replacing the statistical algorithms with QIGP with
the aim of producing an accurate mathematical linear prediction equation, and (2) addressing the
issues associated with the computational cost of the traditional optimization algorithms, and an
effort has been hired to build a new bio-inspired quantum computation model and enhancing its
productivity as well. A chain of experimentations proofs that the suggested QIGP procedure is
meaningfully accurate and faster than other widespread prototypes.

The remaining of this paper is structured as follows. Section 2 displays the current related work.
Section 3 offers the in-depth process of the suggested QIGP algorithm. The experiment results and
their discussion are given in Section 4. To close, in Section 5, we conclude this paper.

II. Research Method

In the literature, different methodologies are introduced for predicting the toxicity degree of
chemical compounds. The most common methods are based on statistical analysis to discover the
major associations among variables, i.e. latent variables to forming the covariance layouts in these
spaces [16][17]. Despite the simplicity of these methods, there are certain restrictions and
assumptions like the independence of the variables, and inherent normal distributions of the
variables. For instance, Relevance Vector Machine (RVM) technique was employed to build the
regression models for the prediction of oral acute toxicity rate [21]. However, the disadvantage of
RVM includes non-parametric, in other words, the classifier is deduced directly from the data
without assumptions about a probabilistic distribution.

Numerous statistical-based prediction methods have been utilized inside in recent years, among
them discriminant analysis, principal component analysis (PCA), factor and cluster analysis [18].
These techniques focus on finding orthogonal projections of the dataset that contains the highest
variance possible in order to 'find hidden linear correlations' between variables of the dataset.
Therefore, if you have several parameters in the dataset that are linearly correlated, you can realize
guidelines that characterize your data, but if the data is not linearly correlated, these approaches are
not sufficient.

With the same objective, the neural network has also been used successfully in QSAR. The NN
systems are normally exploited when the relationships cannot be inferred precisely by linear
equations [19]. NNs regularly reveal configurations analogous to those obtained by persons.
Nevertheless, shortcomings include its “black box™ class, more computational load, and the
inclination towards overfitting [22]. One more research including NN based on the radial basis
function manner is presented with the intention of creating QSTR models for the prediction of
toxicity. However, the prediction accuracy was not optimal; this is due to difficulties in the loading
of training samples and learning process.

The existing neuro-prediction methods fail to handle the problem of minimizing the differences
between the data values and their corresponding modeled values since they have a major limitation
in selecting optimal factors (chemical compounds descriptors). Recently a lot of research interest is
being shown in optimization techniques that can obtain a linear formulation for prediction schemes
based on cross- correlation maximization which can alleviate the problem of local minima and at the
same time reduce computational complexity [19] [23] [24].
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An insight into the potential benefits of using optimization-based prediction models for toxicity
real valued-data is provided in [25]. In this case, genetic programming is used in the induction of
decision trees for application to two Eco- toxicity datasets of organic compounds, both with a large
number of inputs and four classes obtained from equal frequency splitting of the endpoint. GP can
handle a vast number of correlated descriptors; so that no form of feature extraction is required prior
to forming the decision trees. However, the efficiency of this system depends mainly on the
configuration parameters of genetic programming, which may often require considerable time to
achieve its purpose.

Predicting the toxicity of chemical compounds is an important process in various fields such as
drug manufacturing and chemicals industry. Yet, traditional toxicity prediction methods are not
accurate enough. Moreover, current GP-based prediction approaches suffer from large
computational cost, non-convergence to a global optimum and premature convergence. To avoid the
potential errors in GP-based chemicals toxicity prediction, the formal QIGP paradigm is fit for
precisely describing the toxicity degree. This paradigm able to address the multimodal functions,
without that the population diversity tends to gradually disappear and may make the algorithm
stagnate in local optima.

This section describes in details the proposed quantum inspired prediction system that aims to
form an accurate linear equation to estimate phenols toxicity degree. The system’s inputs are the five
phenols descriptors in addition to the value of the toxicity degree obtained from laboratory
experiments called Ciliate Tetrahymena Pyriformis. The system adapts GP to obtain the optimal tree
representation for toxicity linear equation; this tree is formed based on normalized Euclidean
objective function. The quantum computing is utilized inside the suggested system to exploit
randomness offered by the probabilistic models of quantum chromosomes described by qubits to
realize discrepancy in the population's assembly. This great variation in each generation leads to
reduce the required number of GP generations to reach the optimal solution. Fig. 2 shows the main
components of the suggested prediction system and how these components are linked together and
the following subsections discuss its steps in details.

Step1: Building Database for Chemical Descriptors

Given the chemical data set that consists of four chemical compounds; the phenol descriptors are
calculated; see [27] for a supplementary complete information about these descriptors. These
descriptors are stored in a central database beside the corresponding toxicity value of each phenol.
So there exist 221 phenols “records”; each record has five attributes (descriptors) and the last field
contains the toxicity degree. These descriptors are used later to build GP tree structure.
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Fig. 2.Quantum inspired genetic programming Predication model

Step2: Quantum Genetic Programming Model

Genetic Programming is a symbolic optimization technique based on so-called “tree
representation”. This representation is extremely flexible, as trees can symbolize computer
programs, mathematical equations or comprehensive prototypes of a process. A population in GP is
a hierarchically organized tree involving functions and terminals. The functions and terminals are
carefully chosen from a set of functions (operators) and a set of terminals. In our case, the set of
operators F contains the basic arithmetic operations: F= for simple implementation (low
computational cost). The set of terminals 7 contains the arguments for the functions. Herein,

T= and x represent the phenol descriptor.

Given these initial populations, the next step is to reform the population set according to qubit
representation. The QGP is based on the representation of the quantum state vector. It applies the
probabilistic amplitude representation of qubit to the coding of the tree, which makes one tree
represent the superposition of many states, and uses quantum rotation gates to fulfill the update
operation, to overcome the premature convergence by employing quantum crossover and finally
accomplishes the optimal determination of the goal [28]. QGP is qubit based encoding for the GP
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population tree, such that each internal node can be found in the superposition of » states at quantum
population and it represents only one state in classic population by applying measurement.
According to the information of the optimal individual in each operator “internal node”, quantum
gates can lead populations to update themselves.

Qubit is the minimum information component in quantum computing. In our case, it represents a
four-state quantum system described as:

s> = 04]00) + 0,[01) + a3]10) + 0, [11) (1)

ot [ +0cz]? + o | + [ |® = 1 )

in which 00, 01, 10, and 11 are employed to encode +, -, / and * operators respectively. In QGP,
multi-qubit is used to store and represent one gene. Each qubit may be in the '1' state, the '0' state, or
any superposition of the two. To be exact, the information embodied by this gene is not steady,
nevertheless possible; as a result, when an operation is passed on this gene, it may be terminated to
all probable information concurrently. Herein, each gene has two-qubits. The multi-dimensional
unitary transform is very difficult to design. The simpler solution is to adopt the binary coding
technique in GP to encode these qubits of multi-states; i.e. using two qubits to represent multi-states.
This method has better adaptability and is easier to understand. Herein, the suggested system uses
tensor product a way of putting vector spaces together to form larger vector spaces, to handle the
difficulty of representing multi-state, so that:

lvw)y =|v) @ |w) = [V)|W),
j01) =[0) ® |1) = |0)|1)] 3)

so0, two qubits are used to represent one gene; and each qubit can stay in the superposition of the
two quantum states simultaneously, e.g.

[¥e> = 10) + BI1) @)
represents the state of spin up, while |1} represents the state of spin down. For general case,
the multi-qubits are applied to represent the multi-state operator node, as follows:

t t t t t t t t t
gt = YVl Vi Yar|Vao| (Vail Vina [Vin | Vini
Bt|Btal... | Biic| B | BSa ... Boie| Bina | Bina | B

(6))

@ represents the chromosome of the #-th generation and the j-th tree, & is the qubit number of
every coding state, and m is the operator node number in each tree. The adoption of qubit coding
enables one tree to represent the superposition of multi-states simultaneously, making the QGP
better in diversity to the classic GP algorithm. As stated in [28], convergence can be also obtained
with the qubit representation. As or approaches to 0 or 1, the qubit chromosome (tree data
structure) converges to one single state.

Each qubit is initialized to This clarifies that one qubit gene may represent the

superposition of all possible states with the same probability. For the updating execution
mechanism, Quantum rotation gate can be used [29]

_ [cosB; —sin6;]
U®) = [sin 0; cos®; ©)

where @is an arbitrary single qubit unitary operation, and @ is the rotation angle for each qubit,
defined as:

8; = S(Ym, Brm) * 28] (7

is the sign of fp]that determines the direction, and is the magnitude of rotation gate
illustrated in Fig. 3, and So, [y* |and [g; ]are calculated as [9].

vl o
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Fig. 3: Rotation Gate for Qubit

Table 1: Rotation Angle Selection Strategy
N TEARSIC)) 5 (Ym, Bm) * 28

3 Vm*Bm>0 Wm*Bm<G |lu=0 Bn=4d
0o 0 False 0 0 0 0 0
0o 0 True 0 0 0 0 0
0 1 False 0 0 0 0 0
0 1 True i 1 -1 0 e
1 0 False 0 0 0 0 0
1o True i -1 1 k1 0
1 1 False 0 0 0 0 0
1 1 True 0 0 0 0 0

The next step is to measure all the updated populations (each qubit is updated using rotation gate)
and obtain a group of definite solution. The measuring execution is as follows: generate a random
number|q between 0 and 1. If > the measuring result is 1; otherwise 0. Then evaluate the
group of the solution with its fitness, the best tree and its fitness among the binary solution is
then selected and stored for next generations. In Table 1, the updating policy is to match the fitness
if (x) bf the recent quantified value of the item @1 with the current evolutionary aim's ﬁtness If

ﬂxlj > ﬂbd] then fine-tune the qubit of the related bit to force the likelihood value
progress near the track of promoting the appearance of ¢} In contrast, if then regulate
the qubit of the equivalent bit to attain the probability amplitude go forward in the direction of
aiding the presence of @ As well, @is the angle step of every updating. The value of |5 has an
influence on the convergence speed; if the value is too large, the resolution may move away or have
an early convergence to a local optimum. In this, the dynamic tune of @ is approved, so that, it
receipts a value flanked by and by dynamic tuning as stated by the variance of the genetic
generations.

The most difficult section in GP is determining an objective function; different environment may
have different fitness function, and so in this research, the system uses the normalized Euclidean
distance metric as the most effective values that affect phenol toxicity prediction defined as
function:

=" 3" (xyi)?
‘/ ' )

where [fis the calculated fitness value,|x; y]|are the corresponding result and target and n is the
i, Vi P g g

phenols number. During generations, the solution of the generation is converged little by little to the
optimum solution. In each generation, get a group of solution through measuring

calculate the fitness of every solution, carry out the crossover and mutation on the individuals of the
generation, revise them by employing the quantum gates to obtain |g(t + 1), warehouse the updated

ideal solution and equate it with the current individual. If the optimum solution is bigger than the
present individual, the present individual is replaced by the optimum solution; otherwise, the present
individual remains unchanged. Termination condition is responsible in designating the individual
program that is identified with the best fitness. This outcome may be a solution to the problem.
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In formal, to localize an optimal point of an objective function , an GP uses a population

of elements of|p, which is modified by genetic operators, like mutation, crossover, and selection.
Assume that jj signifies the number of parents and p the number of descendants in one generation.
The implementation of an GP requires that the abstract elements of p be represented by a data
structure, i. e. elements of a space |l The set p| is called the phenotype space and @the genotype
space. For instance, when applying S terminologies in a GP-system, @contains all S terminologies,
whereas the phenotype space involves all functions
(where 4 and B are defined by the problem to be resolved)[30]. Concerning GP, it is

adequate to warehouse an individual in genotype mode, as the genotype-phenotype mapping

is deterministic and environmental impacts are not considered. Hence, we can represent
a population at generation ¢ by [Pop(t) € G
The mapping can be composed simply from Hreduced mappings which

represent the geno-phenotype mapping for single individuals:
h(g) = (h'(g1), -, h'(81), &= (g1, -, 8x) € G]The mapping determines the abstract

element |’ (x)| of the search space being signified by Therefore, the mapping m defines the

relationship between genotype and phenotype space. The crossover operator k;gu XQy = G

produces )|descendants from the parent population by merging the parental genetic information. The
probabilistic effect for the period of crossover is defined by the probability space ( @), i.e. the
result of the crossover be subject to the random choice of in keeping with

The mutation ’m; Gix 0, - g”‘ is functioning on the genotype space @only. Here ( @ is

the primary probability space. The new population| Pop(t+1) € g“‘ is elected from the set of

offspring of where the election of an individual is established explicitly or implicitly based
on the objective function [f : p — W‘ The objective function evaluates only the phenotype. This is
formalized by the selection operator [s; g% x p* x 2, — g”‘ (with probability space ( @). With
h*: G* > G* x pi h*(g) = (g, h(9)) forp € g“ the equation:

Pop(t + 1) = s(h * (m(r(Pop(t), ®,), wm)), ws)  (10)

holds, where )wr €N, w,E _(2",* and )ws € _(24 are chosen randomly according to and @ In

general, the phenols are structurally heterogeneous and represent a variety of mechanisms of toxic
action. The pseudo code of the suggested system is as follows. Furthermore, Table 2 and 3 list GP
parameters, terminal and functions respectively.

the support function

Algorithm 1: QGP

Input: Dataset T; No. of Generation t=0; set of arithmetic
operator F={+, -, /, *!; Initial Populations Pops.

1-  while t < MAX GENS do

2- tet+]

3-  Pops <« Qubit Encoding(Pops)

4-  Fitness Vals=Fitness Evaluation(Pops)

5-  Pop « Selection_Best (Pops, Fitness_Vals)
6- If Termination_Condition is False, then

7-  fori<«— 0to (POP_SIZE — 1) do

8- New Pops (i) <Crossover(Pop)
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9-  New_Pops (i) < Mutation(New_Pops)
10- end

11- Pops= New_Pops

12- end

13- If Termination_Condition is True, then
14- Return Pop

15- end

16- end

17- Best Tree= Pop

Table 2. Genetic Programming Parameters

Parameter Value
Population size 50
Maximum number of evaluated 2500
individuals
Selection Rotational Gate
Mutation one point
Crossover two point
Generation gap 0.6
Likelihood of Crossover 0.7
Likelihood of Mutation 0.3
Termination Condition 200 Generation

Table 3. Genetic Programming terminals and functions

Objective Determining the least in Euclidean
Distance
Terminal set log Ko, log Doy, pKa, Erumo, Enomo
Function Set +,—,/%

Fitness function

n

;Uxi_m)z

III. Analysis and Result

This section validates the efficiency of the suggested system by performing many experiments on
a benchmarked realistic dataset [27]. Furthermore, the performance is compared with traditional
statistical prediction approach in order to evaluate the predicted accuracy of proposed approach. The
system is implemented in a form of MATLAB library, which was designed to be easy to use in
custom applications. The tests are conducted on a machine with Intel(R) Zeon(R) CPU E5430@
2.66GHz (2 Processor), 16 GB RAM PC running Microsoft windows 8.1 Enterprise 64 bit. The
simulation outcomes approve the capability of the suggested technique to achieve precise prediction
of toxicity degree.

R=0.94866

@ T‘ O— Target Toxicity Degree
sl I I # - QGP Toxicity Degree
!
f ]
T I

Toxicity Value

. . . . . . .
0 5 10 15 20 25 30 35 40 45
Test Sample Number

Fig. 4. Experimental (target) versus predicted toxicity using the QGP
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Fig. 5. Experimental versus predicted toxicity using the CGP

In our evaluation using standard benchmarks, our best prediction achieved a correlation
coefficient (R-value) over 0.94. It is confirmed that the proposed QGP algorithm proved superior
toxicity prediction performance when compared with GP, RBF NN algorithms that archive 0.91,
0.79 correspondingly in R metric as illustrated in Fig. 4,5, and 6 sequentially. One possible
explanation for that results is that utilizing GP for prediction creates a diversity of solutions with
unlimited search ability according to different GP parameters such as selection, crossover, mutation
and tree depth. This diversity is usually associated with an objective function that can produce the
optimal tree structure (linear equation). Unlike the neural network-based prediction that mainly
depends on the weighting matrix to build a hidden nonlinear relationship between input samples and
output (toxicity prediction degree). However, the quality of NN prediction often stacks with
architecture complexity, generalization ability, noise-tolerant ability, and limited search-ability.

R=0.79108

@ @

o}
!

—G— Target Toxicity Degree
#  RBF NN Toxicity Degree

Toxicity Value

o) 5 10 15 20 25 30 35 40 45
Test Sample Numbers

Fig. 6: Experimental versus predicted toxicity using the RBF NN.

Overall, GP had the aptitude of successfully modelling composite real-world relations in
comparison to the traditional regression approaches. Despite the enhancements in the prediction
accuracy achieved by employing GP, the result reveals that GP can rebuild the transparent
functional relationship as a linear equation which is convenient to use later (e.g., unlike RBF NN).
However, we noticed that one possible disadvantage of utilizing GP for prediction is to produce
extremely linear complex functions, which may not be useful for knowledge induction (e.g., like
black-box modeling techniques). The results demonstrate that QGP-based predication can offer
further improvement in terms of R with low complexity of the generated regression equation as
illustrated in the two generated regression function form both CGP and QCP respectively.

CGP generated equation
08(1/16C50) = (Eromo)/ Eromo)) * (

NHdon)
NHdon

+ (108 Kow) + (108 Kow)) = (Eromo)) + (PKa) — Erumo))))

QGP generated equation
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’log(l/l GCs0) = ((((log Kow) * (ELumo)) — (10g Kow)) — (10g Kow))/(Enumo)

In general, inspiring quantum computing concept inside GP leads to the diversity of the
populations than classical GP. These diversity helps to obtain optimal solutions with best fitness
functions that can be used later to select the optimal linear equation for toxicity prediction.
Furthermore, in quantum chromosomes, the linear superposition of all possible binary states
provides great variety over classical representation. To converge the chromosome individuals
toward optimal solutions, quantum rotation gate is incorporated. Table 4 summarizes the results of
all prediction methods.

Table 4. Comparative result using testing set = 41 phenols

Method R
QGP 0.9486
GP 0.9068
RBF NN 0.7910

Table 5 displays the run time and fitness evaluation of the two algorithms CGP and QGP. The
population size of CGA is 50, while the QGA's population size is chosen to be 10. The table offers
the mean value of the best fitness, the average fitness, the worst fitness and the elapsed time per
generation. Over 20 runs with the simulation setup configuration as number of generations = 200,
tree depth =12, generation gap =0.6, crossover probability = 0.7 and mutation probability = 0.3, the
results reveal that QGP with 10 individuals can reach a better effect regarding both of best fitness
and mean fitness of CGP with 50 individuals, but QGP's elapsed time is only 1/3 of that of CGP.

Table 5. Comparative results between CGP & QGP

CGP QGP
Population size 50 10
Best fitness 1.57 0.8976
Average fitness 179.53 147.41
Worst fitness 1753.2 2681.6
Elapsed time 289.01 88.89

Fig.7 shows the progress of the average fitness of QGP with 10 individuals using the fixed rotation angle
and dynamic adjusting rotation angle. From the figure, we can see the superiority of the dynamic adjusting
rotation angle. The experimental results demonstrate that the convergence speed of the dynamic tuning of is
higher than that of the fixed rotation angle. Dynamic quantum rotation gate enhances the prediction
accuracy by increasing number of populations through increasing qubits possible probability (i.e.
diversity).
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Fig.7: The progress of the average fitness of QGP with the fixed and dynamic rotation angle
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IV. Conclusion

In this work, we presented a novel QSTR methodology based on the QGP model for toxicity
prediction by extracting linear equations to calculate phenol toxicity. The QGP model were
produced based on the quantum rotational gate in order to exploit randomness offered by quantum
chromosomes described by qubits, which is fast and gives a linear equation, in contrast to most
traditional training techniques. The model generated for the data set required five descriptors. In our
case, the best model developed by QGP gives a more accurate prediction than the pre-specified
model optimized by both GP and RBF NN. This is due to the fact that in QGP a much wider
solution space can be analyzed because the structure of the models is not prescribed in advance but
is left to the evolutionary procedure with different likelihoods arising from qubit superposition by
means of quantum rotation gate. By combining the GP and superposition concept, we successfully
enhanced the toxicity prediction accuracy, and the result shows that the calculation efficiency of
QGP is obviously better than that of CGP and RBF NN.

In terms of the R, the QGP models proved to have a significant predictive potential. The results
obtained illustrate that the QGP architecture can be used to derive QSTRs, which are more accurate
and have better generalization capabilities compared to other models. QGP could be a substitute for
costly and time-consuming experiments for toxicity determination. The results imply that the GP
approach could be successfully used if there are relatively simple relations between input and output
variables. If the relations would be more complex (e.g., much more complicated geometry), the
QGP would be a much more suitable approach. In the future work, the plan is to enhance the toxicity
prediction accuracy by applying the quantum rotation gate on the terminals.
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