(2) Uswatun Hasanah (Universitas Negeri Semarang, Indonesia)
(3) Syahroni Hidayat (Universitas Negeri Semarang, Indonesia)
*corresponding author
AbstractThe 7P marketing mix encompasses various business facets, notably the Process element governing internal operations from production to customer service. With the surge in online customer feedback, assessing machine learning efficacy, especially ensemble learning, in classifying 7P-related customer review data has gained prominence. This research aims to fill a gap in existing literature by evaluating ensemble learning’s performance on 7P classification, an area not extensively explored despite prior sentiment analysis studies. Employing a methodology merging Natural Language Processing (NLP) with ensemble learning, the study processes restaurant reviews using NLP techniques and employs ensemble learning for precision and accuracy. Findings demonstrate that DESMI yielded the highest performance metrics with accuracy at 0.697, precision at 0.699, recall at 0.697, and an F1-score of 0.684. These outcomes underscore ensemble learning's potential in handling complex datasets, signifying its relevance for marketers and researchers seeking comprehensive insights from customer reviews within the 7P marketing mix domain. This study sheds light on how ensemble learning outperforms its foundational methods, indicating its prowess in extracting meaningful insights from diverse and intricate customer feedback.
Keywords7P Marketing Mix; Ensemble Learning; Online Review; Sentiment Analysis; Text Classification
|
DOIhttps://doi.org/10.29099/ijair.v7i2.1096 |
Article metrics10.29099/ijair.v7i2.1096 Abstract views : 1878 | PDF views : 173 |
Cite |
Full TextDownload |
References
K. Jarek and G. Mazurek, “Marketing and artificial intelligence,” Cent. Eur. Bus. Rev., vol. 8, no. 2, pp. 46–55, 2019.
J. Paul and E. Mas, “Toward a 7-P framework for international marketing,” J. Strateg. Mark., vol. 28, no. 8, pp. 681–701, 2020.
P. Kotler and K. L. Keller, Marketing Management. Pearson, 2016.
M. Mustak, J. Salminen, L. Plé, and J. Wirtz, “Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda,” J. Bus. Res., vol. 124, no. January, pp. 389–404, 2021.
S. Fan, R. Y. K. Lau, and J. L. Zhao, “Demystifying Big Data Analytics for Business Intelligence Through the Lens of Marketing Mix,” Big Data Res., vol. 2, no. 1, pp. 28–32, 2015.
M. Holmlund et al., “Customer experience management in the age of big data analytics: A strategic framework,” J. Bus. Res., vol. 116, no. February, pp. 356–365, 2020.
K. K. Halim, S. Halim, and Felecia, “Business intelligence for designing restaurant marketing strategy: A case study,” Procedia Comput. Sci., vol. 161, pp. 615–622, 2019.
A. Rosário and R. Raimundo, “Consumer marketing strategy and e-commerce in the last decade: A literature review,” J. Theor. Appl. Electron. Commer. Res., vol. 16, no. 7, pp. 3003–3024, 2021.
M. Stone et al., “Artificial intelligence (AI) in strategic marketing decision-making: a research agenda,” Bottom Line, vol. 33, no. 2, pp. 183–200, 2020.
J. Saidali, H. Rahich, Y. Tabaa, and A. Medouri, “The combination between Big Data and Marketing Strategies to gain valuable Business Insights for better Production Success,” Procedia Manuf., vol. 32, pp. 1017–1023, 2019.
L. Kwok, Y. Tang, and B. Yu, “The 7 Ps marketing mix of home-sharing services: Mining travelers’ online reviews on Airbnb,” Int. J. Hosp. Manag., vol. 90, no. August 2019, 2020.
B. Sunarko et al., “Penerapan Stacking Ensemble Learning untuk Klasifikasi Efek Kesehatan Akibat,” Edu Komputika J., vol. 10, no. 1, pp. 55–63, 2023.
M. Murad, S. Sukmawaty, A. Ansar, R. Sabani, and S. Hidayat, “Sistem Pendeteksi Kerusakan Buah Mangga Menggunakan Sensor Gas Dengan Metode DCS - LCA,” JTIM J. Teknol. Inf. dan Multimed., vol. 3, no. 4, pp. 186–194, 2021.
F. D. Vidal Bezerra, F. Pinto Marinho, P. A. Costa Rocha, V. Oliveira Santos, J. Van Griensven Thé, and B. Gharabaghi, “Machine Learning Dynamic Ensemble Methods for Solar Irradiance and Wind Speed Predictions,” Atmosphere (Basel)., vol. 14, no. 11, p. 1635, 2023.
Y. Yang, F. Jinfu, W. Zhongjie, Z. Zheng, and X. Yukun, “A dynamic ensemble method for residential short-term load forecasting,” Alexandria Eng. J., vol. 63, pp. 75–88, 2023.
R. Rismayati, I. Ismarmiaty, and S. Hidayat, “Ensemble Implementation for Predicting Student Graduation with Classification Algorithm,” Int. J. Eng. Comput. Sci. Appl., vol. 1, no. 1, pp. 35–42, 2022.
M. Cheng and X. Jin, “What do Airbnb users care about? An analysis of online review comments,” Int. J. Hosp. Manag., vol. 76, no. April 2018, pp. 58–70, 2019.
J. Joung and H. Kim, “Interpretable machine learning-based approach for customer segmentation for new product development from online product reviews,” Int. J. Inf. Manage., vol. 70, no. February, p. 102641, 2023.
A. Ahani, M. Nilashi, O. Ibrahim, L. Sanzogni, and S. Weaven, “Market segmentation and travel choice prediction in Spa hotels through TripAdvisor’s online reviews,” Int. J. Hosp. Manag., vol. 80, no. March 2018, pp. 52–77, 2019.
B. Shin, S. Ryu, Y. Kim, and D. Kim, “Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis,” J. Multimed. Inf. Syst., vol. 9, no. 1, pp. 61–68, 2022.
A. Patel, P. Oza, and S. Agrawal, “Sentiment Analysis of Customer Feedback and Reviews for Airline Services using Language Representation Model,” Procedia Comput. Sci., vol. 218, pp. 2459–2467, 2022.
Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer review: Case study of Traveloka,” Procedia Comput. Sci., vol. 216, no. 2022, pp. 682–690, 2022.
Crawl Feeds, “opensnippets/new-york-hotel-reviews-dataset-from-tripadvisor,” Data.World, 2021. [Online]. Available: https://data.world/opensnippets/new-york-hotel-reviews-dataset-from-tripadvisor. [Accessed: 17-Oct-2023].
E. M. Mercha and H. Benbrahim, “Machine learning and deep learning for sentiment analysis across languages: A survey,” Neurocomputing, vol. 531, pp. 195–216, 2023.
B. Gaye, D. Zhang, and A. Wulamu, “Sentiment classification for employees reviews using regression vectorstochastic gradient descent classifier (RV-SGDC),” PeerJ Comput. Sci., vol. 7, pp. 1–27, 2021.
A. A. Sayed, E. Elgeldawi, A. M. Zaki, and A. R. Galal, “Sentiment Analysis for Arabic Reviews using Machine Learning Classification Algorithms,” in Proceedings of 2020 International Conference on Innovative Trends in Communication and Computer Engineering, ITCE 2020, 2020, no. February, pp. 56–63.
S. García, Z. L. Zhang, A. Altalhi, S. Alshomrani, and F. Herrera, “Dynamic ensemble selection for multi-class imbalanced datasets,” Inf. Sci. (Ny)., vol. 445–446, pp. 22–37, 2018.
P. R. G. Cordeiro, G. D. C. Cavalcanti, and R. M. O. Cruz, “Dynamic Ensemble Algorithm Post-Selection Using Hardness-Aware Oracle,” IEEE Access, vol. 11, no. July, pp. 86056–86070, 2023.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
________________________________________________________
The International Journal of Artificial Intelligence Research
Organized by: Departemen Teknik Informatika
Published by: STMIK Dharma Wacana
Jl. Kenanga No.03 Mulyojati 16C Metro Barat Kota Metro Lampung
Email: jurnal.ijair@gmail.com
This work is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.